Connect with us

Uncategorized

Decoding the CRISPR-baby stories

Published

on

The conventional story of CRISPR genome editing is one of heroic power and promise with an element of peril. That peril became personified when MIT Technology Review’s Antonio Regalado revealed in November 2018 that a young Chinese scientist named He Jiankui was using CRISPR to engineer human embryos. At least three of them became living children. The “CRISPR babies” episode is now an obligatory chapter in any telling of the gene-editing story. When Jennifer Doudna and Emmanuelle Charpentier were awarded the Nobel Prize last year for their invention of CRISPR, virtually every news story also mentioned He. In this century’s grandest story of heroic science, he plays the villain.

Storytelling matters. It shapes not only how the past is remembered, but how the future unfolds.

He Jiankui’s plans were shaped by stories about how science progresses and how heroes are made. One such moment came in a small, closed-door meeting hosted by Doudna at the University of California, Berkeley, in January 2017, to which He was invited. There a senior scientist from an elite American university observed, “Many major breakthroughs are driven by one or a couple of scientists … by cowboy science.” 

I too was at that meeting in January 2017, where I met He for the first time. We exchanged notes periodically in the months that followed, but the next time I saw him was at the International Summit on Genome Editing in Hong Kong in 2018, two days after Regalado had forced him to go public before he planned. After the summit, He disappeared from view: he was being held by Chinese authorities in a guest house on his university’s campus. 

A month later, he called me, wanting to tell his story. He gave me a detailed history of the CRISPR-babies episode, explaining what motivated his project and the network of people—scientists, entrepreneurs, venture capitalists, and government officials—who supported it. The 2017 Berkeley meeting turned out to have been pivotal, especially the “cowboy science” comment. “That strongly influenced me,” he told me. “You need a person to break the glass.” 

After the 2017 meeting, He started reading biographies of scientific risk-takers who were ultimately hailed as heroes, from Edward Jenner, creator of the first vaccine, to Robert Edwards, pioneer of in vitro fertilization (IVF). In January 2019, he wrote to government investigators: “I firmly believe that what I am doing is to promote the progress of human civilization. History will stand on my side.”

Looking back at my notes from the 2017 meeting, I discovered that He had remembered only the first half of that provocative statement. It continued: “What’s going on right now is cowboy science … but that doesn’t mean that’s the best way to proceed … we should take a lesson from our history and do better the next time around.”

Learning from history?

Kevin Davies’s Editing Humanity follows a circuitous path through the remarkably diverse experiments and laboratories where the CRISPR puzzle was pieced together. The story of discovery is gripping, not least because Davies, a geneticist turned editor and writer, skillfully weaves together a wealth of detail in a page-turning narrative. The book gives a textured picture of the intersection of academic science with the business of biotechnology, exploring the enormous competition, conflict, and capital that have surrounded CRISPR’s commercialization. 

However, Davies’s book is heavy on the business of gene editing, light on the humanity. The narrative emphasizes the arenas of scientific discovery and technological innovation as though they alone are where the future is made.  

Humanity first appears as something more than an object of gene editing in the last line of the book: “CRISPR is moving faster than society can keep up. To where is up to all of us.” Yet most of us are missing from the story. Admittedly, the book’s focus is the gene editors and their tools. But for readers already primed to see science as the driver of progress, and society as recalcitrant and retrograde until it eventually “catches up,” this telling reinforces that consequential myth. 

Walter Isaacson’s The Code Breaker cleaves even more closely to scientific laboratories, following the personalities behind the making of CRISPR. The main protagonist of his sprawling book is Doudna, but it also profiles the many other figures, from graduate students to Nobel laureates, whose work intersected with hers. In always admiring and sometimes loving detail, Isaacson narrates the excitement of discovery, the heat of competition, and the rise of scientific celebrity—and, in He’s case, infamy. It is a fascinating story of rivalry and even pettiness, albeit with huge stakes in the form of prizes, patents, profits, and prestige. 

Yet for all its detail, the book tells a narrow story. It is a conventional celebration of discovery and invention that sometimes slides into rather breathless celebrity profile (and gossip). Apart from some chapters of Isaacson’s own rather superficial ruminations on “ethics,” his storytelling rehearses clichés more than it invites reflection and learning. Even the portraits of the people feel distorted by his flattering lens. 

The one exception is He, who gets a few chapters as an unwelcome interloper. Isaacson makes little effort to understand his origins and motivations. He is a nobody with a “smooth personality and a thirst for fame” who attempts to force his way into an elite club where he has no business being. Disaster ensues.

He’s story ends with a “fair trial” and a prison sentence. Here Isaacson parrots a state media report, unwittingly playing propagandist. The official Chinese story was crafted to conclude the He affair and align Chinese science with the responsible rather than the rogue.

Authorizing narratives

These stories of heroic science take for granted what makes a hero—and a villain. Davies’s account is considerably more careful and nuanced, but it too shifts to casting stones before seeking to understand the sources of failure—where He’s project came from, how a person trained at elite American universities could have believed he would be valorized, not condemned, and how he could get so far without realizing how deep a hole he had dug for himself. 

editing humanity

My overwhelming sense from my interviews with He is that far from “going rogue,” he was trying to win a race. His failure lay not in refusing to listen to his scientific elders, but in listening too intently, accepting their encouragement and absorbing things said in the inner spaces of science about where genome editing (and humanity) are headed. Things like: CRISPR will save humanity from the burden of disease and infirmity. Scientific progress will prevail as it has always done when creative and courageous pioneers push boundaries. Genome editing of the germline—embryos, eggs, or sperm that will pass changes down to future generations—is inevitable; the only question is who, when, and where. 

He heard—and believed in—the messianic promise of the power to edit. As Davies writes, “If fixing a single letter in the genetic code of a fellow human being isn’t the coveted chalice of salvation, I don’t know what is.” 

Indeed, as even Isaacson notes, the National Academies had sent similar signals, leaving the door open to germline engineering for “serious diseases or conditions.” He Jiankui was roundly criticized for making an edit that was “medically unnecessary”—a genetic change he hoped would make babies genetically resistant to HIV. There are, the critics argued, easier and safer ways to avoid transmitting the virus. But he believed that the terrible stigma in China against HIV-positive people made it a justified target. And the Academies left room for that call: “It is important to note that such concepts as ‘reasonable alternatives’ and ‘serious disease or condition’ … are necessarily vague. Different societies will interpret these concepts in the context of their diverse historical, cultural, and social characteristics.”

Science-centric storytelling implies that  Science sits outside of society, that it deals primarily with pure arenas of nature and knowledge. But that is a false narrative.  

He understood this as an authorization. These are the true origins of his grotesque experiment. The picture of He, and the scientific community he was embedded in, is a rather more ambiguous one than the virtuous science of Isaacson’s telling. Or, rather, it’s a more human one, in which knowledge and technical acumen aren’t necessarily accompanied by wisdom and may instead be colored by ambition, greed, and myopia. Isaacson does the scientists a disservice by presenting them as the makers of the future rather than as people confronting the awesome power of the tools they have created, attempting (and, often, failing) to temper promises of progress with the humility to recognize that they are out of their depth. 

Another cost of science-centric storytelling is the way it implies that science sits outside of society, that it deals primarily with the pure arenas of nature and knowledge. But that is a false narrative. For instance, the commercial business of IVF is a crucial part of the story, and yet it receives remarkably little attention in Davies’s and Isaacson’s accounts. In this regard, their books reflect a deficit in the genome-­editing debates. Scientific authorities have tended to proceed as though the world is as governable as a laboratory bench, and as if anyone who thinks rationally thinks like them. 

Humanity’s stories 

These science-centric stories sideline the people in whose name the research is done. Eben Kirksey’s The Mutant Project brings those people into the picture. His book, too, is a tour of the actors at the frontiers of genome editing, but for him those actors also include patients, activists, artists, and scholars who engage with disability and disease as lived experiences and not merely as DNA molecules. In Kirksey’s book, issues of justice are entangled with the way stories are told about how bodies should be—and not be. This wrests questions of progress from the grip of science and technology. 

Like Davies, Kirksey uses the He affair to frame his story. A skilled anthropologist, he is at his best when drawing out people’s own stories about what is at stake for them. Some of the most remarkable interviews in the book are with the patients from He Jiankui’s trial, including an HIV-positive medical professional who became more deeply committed to He’s project after he was fired from his job because his HIV status was discovered. 

Kirksey’s attention to human beings as more than engineerable bodies, and to the desires that drive the imperative to edit, invites us to recognize the extraordinary peril of reaching into the gene-editing tool kit for salvation. 

That peril is too often obscured by hastily spun stories of progress. On the final morning of the genome-editing summit in Hong Kong, less than 24 hours after He had presented his CRISPR-babies experiment, the conference organizing committee issued a statement simultaneously rebuking him and laying a pathway for those who would follow in his footsteps. Behind the statement was a story: one in which technology is racing ahead, and society needs to just accept it—and affirm it. A member of that committee told Kirksey why they had rushed to judgment: “The first person who puts it on paper wins.”

So far, the CRISPR story has been about racing to be the first to write—not just scientific papers, but the nucleotides of the genome and rules for the human future. The rush to write—and win—the future leaves little room for learning from patterns of the past. Stories of technological futures, thrilling though they may be, substitute a thin narrative of progress for the richness and fragility of the human story. 

We need to listen to more and better storytellers. Our common future depends upon it.

Uncategorized

Vietnamese electric motorbike startup Dat Bike raises $2.6M led by Jungle Ventures

Published

on

Son Nguyen, founder and chief executive officer of Dat Bike on one of the startup's motorbikes

Son Nguyen, founder and chief executive officer of Dat Bike

Dat Bike, a Vietnamese startup with ambitions to become the top electric motorbike company in Southeast Asia, has raised $2.6 million in pre-Series A funding led by Jungle Ventures. Made in Vietnam with mostly domestic parts, Dat Bike’s selling point is its ability to compete with gas motorbikes in terms of pricing and performance. Its new funding is the first time Jungle Ventures has invested in the mobility sector and included participation from Wavemaker Partners, Hustle Fund and iSeed Ventures.

Founder and chief executive officer Son Nguyen began learning how to build bikes from scrap parts while working as a software engineer in Silicon Valley. In 2018, he moved back to Vietnam and launched Dat Bike. More than 80% of households in Indonesia, Malaysia, Thailand and Vietnam own two-wheeled vehicles, but the majority are fueled by gas. Nguyen told TechCrunch that many people want to switch to electric motorbikes, but a major obstacle is performance.

Nguyen said that Dat Bike offers three times the performance (5 kW versus 1.5 kW) and 2 times the range (100 km versus 50 km) of most electric motorbikes in the market, at the same price point. The company’s flagship motorbike, called Weaver, was created to compete against gas motorbikes. It seats two people, which Nguyen noted is an important selling point in Southeast Asian countries, and has a 5000W motor that accelerates from 0 to 50 km per hour in three seconds. The Weaver can be fully charged at a standard electric outlet in about three hours, and reach up to 100 km on one charge (the motorbike’s next iteration will go up to 200 km on one charge).

Dat Bike’s opened its first physical store in Ho Chi Minh City last December. Nguyen said the company “has shipped a few hundred motorbikes so far and still have a backlog of orders.” He added that it saw a 35% month-over-month growth in new orders after the Ho Chi Minh City store opened.

At 39.9 million dong, or about $1,700 USD, Weaver’s pricing is also comparable to the median price of gas motorbikes. Dat Bike partners with banks and financial institutions to offer consumers twelve-month payment plans with no interest.

“These guys are competing with each other to put the emerging middle class of Vietnam on the digital financial market for the first time ever and as a result, we get a very favorable rate,” he said.

While Vietnam’s government hasn’t implemented subsidies for electric motorbikes yet, the Ministry of Transportation has proposed new regulations mandating electric infrastructure at parking lots and bike stations, which Nguyen said will increase the adoption of electric vehicles. Other Vietnamese companies making electric two-wheeled vehicles include VinFast and PEGA.

One of Dat Bike’s advantages is that its bikes are developed in house, with locally-sourced parts. Nguyen said the benefits of manufacturing in Vietnam, instead of sourcing from China and other countries, include streamlined logistics and a more efficient supply chain, since most of Dat Bike’s suppliers are also domestic.

“There are also huge tax advantages for being local, as import tax for bikes is 45% and for bike parts ranging from 15% to 30%,” said Nguyen. “Trade within Southeast Asia is tariff-free though, which means that we have a competitive advantage to expand to the region, compare to foreign imported bikes.”

Dat Bike plans to expand by building its supply chain in Southeast Asia over the next two to three years, with the help of investors like Jungle Ventures.

In a statement, Jungle Ventures founding partner Amit Anand said, “The $25 billion two-wheeler industry in Southeast Asia in particular is ripe for reaping benefits of new developments in electric vehicles and automation. We believe that Dat Bike will lead this charge and create a new benchmark not just in the region but potentially globally for what the next generation of two-wheeler electric vehicles will look and perform like.”

Continue Reading

Uncategorized

Binance Labs leads $1.6M seed round in DeFi startup MOUND, the developer of Pancake Bunny

Published

on

Decentralized finance startup MOUND, known for its yield farming aggregator Pancake Bunny, has raised $1.6 million in seed funding led by Binance Labs. Other participants included IDEO CoLab, SparkLabs Korea and Handshake co-founder Andrew Lee.

Built on Binance Smart Chain, a blockchain for developing high-performance DeFi apps, MOUND says Pancake Bunny now has over 30,000 daily average users, and has accumulated more than $2.1 billion in total value locked (TVL) since its launch in December 2020.

The new funding will be used to expand Pancake Bunny and develop new products. MOUND recently launched Smart Vaults and plans to unveil Cross-Chain Collateralization in about a month, bringing the startup closer to its goal of covering a wide range of DeFi use cases, including farming, lending and swapping.

Smart Vaults are for farming single asset yields on leveraged lending products. It also automatically checks if the cost of leveraging may be more than anticipated returns and can actively lend assets for MOUND’s cross-chain farming.

Cross-Chain Collateralization is cross-chain yield farming that lets users keep original assets on their native blockchain instead of relying on a bridge token. The user’s original assets serve as collateral when the Bunny protocol borrows assets on the Binance Smart Chain for yield farming. This allows users to keep assets on native blockchains while giving them liquidity to generate returns on the Binance Smart Chain.

In statement, Wei Zhou, Binance chief financial officer, and head of Binance Labs and M&A’s, said “Pancake Bunny’s growth and MOUND’s commitent to execution are impressive. Team MOUND’s expertise in live product design and servie was a key factor in our decision to invest. We look forward to expanding the horizons of Defi together with MOUND.”

Continue Reading

Uncategorized

Battery Resourcers raises $20M to commercialize its recycling-plus-manufacturing operations

Published

on

As a greater share of the transportation market becomes electrified, companies have started to grapple with how to dispose of the thousands of tons of used electric vehicle batteries that are expected to come off the roads by the end of the decade.

Battery Resourcers proposes a seemingly simple solution: recycle them. But the company doesn’t stop there. It’s engineered a “closed loop” process to turn that recycled material into nickel-manganese-cobalt cathodes to sell back to battery manufacturers. It is also developing a process to recover and purify graphite, a material used in anodes, to battery-grade.

Battery Resourcers’ business model has attracted another round of investor attention, this time with a $20 million Series B equity round led by Orbia Ventures, with injections from At One Ventures, TDK Ventures, TRUMPF Venture, Doral Energy-Tech Ventures and InMotion Ventures. Battery Resourcers CEO Mike O’Kronley declined to disclose the company’s new valuation.

The cathode and anode, along with the electrolyzer, are major components of battery architecture, and O’Kronley told TechCrunch it is this recycling-plus-manufacturing process that distinguishes the company from other recyclers.

“When we say that we’re on the verge of revolutionizing this industry, what we are doing is we are making the cathode active material — we’re not just recovering the metals that are in the battery, which a lot of other recyclers are doing,” he said. “We’re recovering those materials, and formulating brand new cathode active material, and also recovering and purifying the graphite active material. So those two active materials will be sold to a battery manufacturer and go right back into the new battery.”

“Other recycling companies, they’re focused on recovering just the metals that are in [batteries]: there’s copper, there’s aluminum, there’s nickel, there’s cobalt. They’re focused on recovering those metals and selling them back as commodities into whatever industry needs those metals,” he added. “And they may or may not go back into a battery.”

The company says its approach could reduce the battery industry’s reliance on mined metals — a reliance that’s only anticipated to grow in the coming decades. A study published last December found that demand for cobalt could increase by a factor of 17 and nickel by a factor of 28, depending on the size of EV uptake and advances in battery chemistries.

Thus far, the company’s been operating a demonstration-scale facility in Worcester, Massachusetts, and has expanded into a facility in Novi, Michigan, where it does analytical testing and material characterization. Between the two sites, the company can make around 15 tons of cathode materials a year. This latest funding round will help facilitate the development of a commercial-scale facility, which Battery Resourcers said in a statement will boost its capacity to process 10,000 tons of batteries per year, or batteries from around 20,000 EVs.

Another major piece of its proprietary recycling process is the ability to take in both old and new EV batteries, process them and formulate the newest kind of cathodes used in today’s batteries. “So they can take in 10-year-old batteries from a Chevy Volt and reformulate the metals to make the high-Ni cathode active materials in use today,” a company spokesman explained to TechCrunch.

Battery Resourcers is already receiving inquiries from automakers and consumer electronics companies, O’Kronley said, though he did not provide additional details. But InMotion Ventures, the venture capital arm of Jaguar Land Rover, said in a statement its participation in the round as a “significant investment.”

“[Battery Resourcers’] proprietary end-to-end recycling process supports Jaguar Land Rover’s journey to become a net zero carbon business by 2039,” InMotion managing director Sebastian Peck said.

Battery Resourcers was founded in 2015 after being spun out from Massachusetts’ Worcester Polytechnic Institute. The company has previously received support from the National Science Foundation and the U.S. Advanced Battery Consortium, a collaboration between General Motors, Ford Motor Company and Fiat Chrysler Automobiles.

Continue Reading

Trending